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The study of annulenes continues to be a vibrant area of
research.The desire to synthesize novel topoloditand to probe Ea=213 kealimal
the concept of aromaticityhas further propelled interest in Mius
annulene$:® The observatiof that medium and large annulenes
readily undergo cis/trans isomerization in solution renders it difficult
to study these species, but simultaneously raises intriguing mecha-
nistic questions, especially since the barriers are much lower than
those measured for cis/trans isomerization of acyclic polyenes of
similar z-conjugation lengtil.Recent computational work suggests
that facile thermal configuration change in [12]- and [16]annuléne
proceeds via Mbius aromaticz-bond shifting!®1We now argue
that configuration change in these systeraguiressuch bond-
shifting transition states. It follows that configuration change in
[14]annulene must involve a Mbius antiaromatic transition
staté>—the first example of a concerted reaction that proceeds
through such a transition state. Computational results support this
prediction.

m-Bond shifting in annulenes converts s-cis single bonds to cis
double bonds and s-trans single bonds to trans double bonds. For
Hiickel-topology® annulenes, the number of s-trans single bonds
is either equal to the number of trans double bonds or differs by
an even number. Thus, bond shifting via &ddel conformation
either will be degenerate, or will produce a new configuration with
Atrans= 0, 2, 4, etc., wherdtrans is the difference in the number
of trans double bonds between the starting material and product
(see Supporting Information for examples). In contrast, ibMs-
topology annulenés the number of s-trans single bonds differs
from the number of trans double bonds by an odd number. Thus,
bond shifting via a Mbius conformation necessarily produces a
new configuration withAtrans= 1, 3, 5, etc. This bond-shifting
rule means that for a process witktrans= 1, the mechanism
requiresa Mobius bond-shifting step. Two examples of this are
the aforementioned [12]- and [16]annulene, which undergo facile
thermal cis/trans isomerizatici¥:

Atrans =1

1a 2
CTCTCTT CCTCTCT

Application of the above rule means that the mechanisnior
— 2 also requires a NMaius bond-shifting step, but since [14]-
annulene is a @ + 2 m-electron system, the necessary bond-
equalized transition state must be antiaromatic.

Using UBH&HLYP calculationg*15>we located four different
bond-shifting transition states that accomplish the desired config-
uration change CTCTCTF CCTCTCT. All have Mdius topol-
ogy and singlet diradical character. The transition state of lowest
energy,TS1, is shown in Figure 1. As expected for a bond-shifting
transition stateTS1 is strongly bond-equalized\¢ = 0.040 A).

The largest CCCC torsional angles are c&, 8owing for cyclic
gt overlap.

The full mechanism connectirttp to 2 involves two conforma-
tion change steps, followed by Ns bond shifting (Figure 2).
Because UDFT actually yields “50:50” wave functions for open-
shell singletséthe UDFT energies for these species are not reliable.
We therefore computed energies at the CASPT2(14,14)/cc-pVDZ//
(U)BH&HLYP/6-311+G** level.'® Figure 2 summarizes these
energetics. The computed barrier of 19.3 kcal/mol agrees well with
21 kcal/mol from experiment. Analogous calculations using (U)-
B3LYP geometries gave a barrier of ca. 25 kcal/mol.

The wave function folf S1 has considerable open-shell character
((¥0value of 1.48) at UBH&HLYP/6-31+G**. From CASSCF-
(14,14)/cc-pVDZ calculations, the occupation numbers for the
HOMO (1.57e) and LUMO (0.44e), as well as the ratio of the two
highest configuration weightscf/c,2 = 6.7), also reflect the
significant singlet diradical charact&However, this diradical is
fundamentally different from the type involved in thermal cis/trans

isomerization in acyclic polyenes.
Ea~17 kcaI/moI The disjoint naturg of the UDFT singly occupied MOs
T Arans=1 (SOMOs, Figure 3) rationalizes why this transition state becomes
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Computed barriers for Maus bond shifting in these cases are 1_393" 24:;;5'151 B -144. ?333‘ ol ’, \}\
consistent with experimental valu¥st! Because these arer{d g =G 7 N
annulenes, the bond-equalized transition states are closed-shell and il MM i S side view
highly aromatic. . . . . Figure 1. BS-UBH&HLYP/6-311+G** optimized structure of the lowest-
[14]Annulene is also known to isomerizetfans = 1) in energy Mdius bond-shifting transition statd$1) connectingla and 2.

solution, with a barrier of only 21.3 kcal/m8l: Distances (A) and selected CCCC dihedral angles (deg) are shown.
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provides the first example of a concerted reaction that can only
occur via a Mbius antiaromatic transition state. Moreover, the
bond-shifting rule outlined here requires a Mas transition state

for this system and for other known cases of configuration change
in annulenes.
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